The GOES-R GLM Lightning Jump Algorithm (LJA): Research to Operational Algorithm

Lawrence D. Carey¹, Christopher J. Schultz¹, Walter A. Petersen², Daniel Cecil¹, Monte Bateman³, Steven Goodman⁴, Geoffrey Stano⁵, Valliappa Lakshmanan⁶

- 1 UAHuntsville, Huntsville, AL; 2- NASA GSFC/WFF Wallops, VA; 3 USRA (NASA MSFC); 4 NOAA NESDIS; 5 - ENSCO (NASA MSFC); 6 - OU CIMMS/NOAA NSSL
- Prior R3 (Schultz et al. 2009 MWR, Gatlin and Goodman 2010 JTECH, Schultz et al. 2011 WF) explored the feasibility of thunderstorm cell-oriented lightning-trending or "jump" algorithms for application to operational severe weather warning decision support
 - Objective To refine, adapt and demonstrate the LJA for transition to GOES-R algorithm readiness and to establish a path to operations
- Year 1 Plans reducing risk in algorithm automation, cell tracking, GLM proxy and data fusion. Demonstrating in PG.

- Develop LJA as an automated objective system for operations (Schultz, Carey, Petersen, Goodman)
 - Fully automate and optimize LJA (rules, thresholds) to GLM proxy and multisensor object tracking improvements
 - Objective environmental definition and modification of LJA to improve performance skill scores and mitigate known LJA biases with low topped convection (cool season, tropical)
 - Explore fusion of LJA with radar and multi-sensor GOES-R (ABI) products
- Improve cell (object)-oriented tracking (Cecil, Lakshmanan, Schultz, Carey)
 - Optimize current WDSS-II/K-means cell tracking algorithm to reduce tracking ambiguity for LJA
 - Multi-sensor (GLM proxy, ABI proxy, radar), multi-parameter (e.g. GLM flash initiation density, flash [or group, event] extent density) object tracking
- Refine and develop large GLM "Level II" proxy database for R3 (Bateman, Stano, Carey)
 - Must use representative proxy lightning (e.g., GLM resolution, 8 km)
 - GLM is new GOES-R instrument legacy LIS is LEO so no flash trends
 - Use statistical-physical methods to transform VHF-based LMA (possibly LF/VLF) to optical lightning proxy using LIS as the "Rosetta Stone".
- Demonstrate automated LJA algorithm in NOAA Proving Ground (Carey, Stano, Schultz)
 - Active participation in National Lightning Jump Field Test coordinated by NOAA NWS (planning already underway for Spring 2012)

- The LJA is a 3-pronged system
- Tracking on GLM flash proxy
 - Little legacy research
 - Will be useful for tracking with combinations of data types (ABI, radar) and in radar denied areas.
- Representative GLM flash proxies are critical for development and testing of LJA
- LJA requires optimization to the details of tracking on GLM proxy (or multi-parameter, multi-sensor fields)

Flash rate, lighting jump prior to severe

8 km x 8 km LMA Flash Extent
Density and lightning "cell" tracks